EN BUSCA DE SISTEMAS PLANETARIOS ANALOGOS AL NUESTRO

Salvador Curiel

INSTITUTO DE ASTRONOMÍA, UNAM

Universum - UNAM

31 de Agosto de 2019

EXO-PLANETAS: PLANETAS FUERA DEL SISTEMA SOLAR

0.- Antecedentes

I.- Técnicas usadas

1.- Velocidad Radial ---- Efecto Dopler

- 2.- Tránsito
- 3.- Astrometría
- 4.- Imagen directa

5.- Otros métodos (por ejemplo, lente gravitacional)

II.- Zona Habitable

III. Futuro – Nuevas Técnicas

IV.- Búsqueda de Exoplanetas en México

EL SISTEMA SOLAR

Los Primeros Exoplanetas

Un poco de historia:

- 1. En 1844, Friedrich Bessel es el primero en detectar, a través de un método indirecto, un compañero invisible orbitando en torno a una estrella (Sirio).
- 2. En 1862, Alvan Clark identificó al compañero de Sirio utilizando un telescopio más potente. La compañera es 10,000 veces menos intensa que la estrella principal.
- 3. En 1930. Los descubrimientos de Subrahmanyan Chandrasekhar permitieron determinar que Sirio B es una "Enana Blanca"
- 4. A mediados del siglo XX se obtuvieron las primeras posibles detecciones de planetas gracias a la llegada de mejores telescopios y mejores técnicas fotográficas.
- 5. Durante la segunda guerra mundial se publicó la detección de varios planetas pero posteriormente se encontró que no lo son: o son estrellas o se deben a errores instrumentales.
- 6. En 1969, Piet van de Kamp publicó la detección de 2 planetas similares a Júpiter alrededor de la estrella Barnard. Sin embargo, en 1973, George Gategood y Heinrich Eichorn llevan a cabo un estudio que demuestra que los Planetas alrededor de la estrella Barnard no son reales, son el resultado de problemas instrumentales.
- 7. En 1974, Van de Kamp publica la detección de un planeta alrededor de épsilon Eridani. Sin embargo, estudios posteriores muestran que no hay tal planeta.
- 8. Entre 1973 y 1990, George Gategood se encargo de enterrar varios posibles planetas. Con esto se ganó el sobre nombre de "Enterrador de Planetas". En 1996, George Gategood publicó la detección de un planeta que no ha sido confirmado a la fecha.
- 9. En 1995, Didier Queloz y Michel Mayor, usando una técnica distinta (efecto dopler), descubren el primer planeta fuera del sistema Solar. Este descubrimiento fue fortuito ya que ellos buscaban estrellas frías girando alrededor de estrellas similares al Sol. Este descubrimiento fue confirmado ese mismo año.

En Octubre de 1995, por fin se logró: El primer planeta alrededor de otra estrella.

Un grupo Suizo descubre un planeta - 51 Pegasi a 48 años luz de la Tierra.

51 Pegasi b

P, period; *T*, epoch of the maximum velocity; *e*, eccentricity; K_1 , half-amplitude of the velocity variation; $a_1 \sin i$, where a_1 is the orbital radius; $f_1(m)$, mass function; *N*, number of observations; (O - C), r.m.s. residual.

 $Masa \sim 0.0005 \; M_sun$

Michel Mayor and Didier Queloz 1995, NATURE

EL SISTEMA SOLAR

Esto sólo fue el inicio de la aventura:

"New Planet Seen Outside Solar System" New York Times April 19, 1996

"10 More Planets Discovered"

Washington Post August 6, 2000

"First new solar system discovered" USA TODAY April 16, 1999

N.com / SPACE

SEARCH GO

MAIN PAGE

WEATHER

BUSINESS

SPORTS

POLITICS

SCI-TECH

U.S.

LAW

SPACE

HEALTH

TRAVEL

EDUCATION

IN-DEPTH

ENTERTAINMENT

Netscape 7.1

Download

Exoplanet toll hits 100 as another Jupiter found

June 20, 2002 Posted: 10:07 AM EDT (1407 GMT)

Artist's concept of an exoplanet

By Richard Stenger CNN

(CNN) -- Astronomers said this week they had identified at least eight more planets outside our solar system, bringing the number of known or suspected exoplanets to about 100.

The group, unveiled during an unprecedented string of planet discoveries, includes one much like Jupiter, the second such rare find announced within days.

Exoplanetas encontrados hasta ahora:

4,107 Planets 2,955 Transiting Exoplanets 3,057 Stars with Planets 667 Multi-Planet Systems

- 1 Astrometry
- 132 Imaging
- 855 Radial Velocity
- 2955 Transit
- 155 Other technics

2492 Kepler Candidates yet to be confirmed

<u>http://exoplanet.eu</u> <u>http://exoplanets.org</u> <u>https://exoplanetarchive.ipac.caltech.edu</u>

19 Aug 2019: 4107 confirmed planets!

Orbital Period (day)

Semi-Major Axis (AU)

Definition of a planet

IAU Resolution in 2003 from the exoplanet working group:

- A simple definition is based on **mass**:
 - **Stars**: burn hydrogen
 - **Brown dwarfs**: burn deuterium

Planets: do not burn deuterium

 $M > 0.075 M_{sun}$ $13 M_{jup} < M < 0.075 M_{sun}$

```
M < 13 M_{jup}
```

- Deuterium burning limit occurs at around 13 Jupiter masses, e.g., Chabrier et al 2000 ${
 m M}_{
 m sun} \sim 1000 \; {
 m M}_{
 m jup}$ $I M_{Iup} = 1.9 \ge 10^{27} \text{ kg} \approx 10^{-3} \text{ M}_{sun}$
- Around stars or stellar remnants, no matter how they formed

Hidrógeno = protón + electrón

Deuterio = protón + neutrón + electrón (0.015% hidrógeno) Hay aprox 1 átomo de deuterio por cada 6600 átomos de hidrógeno

EXO-PLANETAS: PLANETAS FUERA DEL SISTEMA SOLAR

I.- Técnicas usadas

- 1.- Velocidad Radial --- Efecto Dopler
- 2.- Tránsito
- 3.- Astrometría
- 4.- Imagen directa
- 5.- Otros métodos (por ejemplo, lente gravitacional)

II.- Zona Habitable

III. Futuro – Nuevas Técnicas

IV.- Búsqueda de Exoplanetas en México

1.- Velocidad Radialó Efecto Dopler

La radiación electromagnética (luz, ondas de radio, rayos X, etc) se transmite en forma de ondas

Las ondas están caracterizadas por λ , su longitud de onda

Luz corrida al azúl

Luz corrida al rojo

$$f - f_0 = f_0 (v_0 - v)/c$$
 $f = f_0 (1 + (v_0 - v)/c)$

Con el telescopio se mide el cambio de la longitud de onda (color) de la luz que nos llega de Estrellas cercanas al Sol. Los datos se obtienen durante periodos de días, semanas, meses y años. Este cambio de longitud de onda es el corrimiento Dopler de la luz que resulta del movimiento orbital de la estrella alrededor del centro de masa del sistema estrella-planeta. Por ejemplo, la gravedad de Júpiter produce que el Sol gire en un circulo alrededor de un punto cerca de su superficie con una velocidad de 13 metros por segundo (13 m/s).

Planeta	a	Р	Μ	V_sun	V_sun	
	(UA)	(años)	(tierra)	(m/s)	(km/h)	
Mercurio	0.3871	0.24085	0.055	0.01	0.04	
Venus	0.7233	0.61521	0.82	0.09	0.3	
Tierra	1.0000	1.000021	1.00	0.09	0.3	
Marte	1.5237	1.88089	0.107	0.01	0.04	
(Ceres)	2.7673	4.604				
Júpiter	5.2028	11.86223	317.9	13.06	47	7.7 seg
Saturno	9.5388	29.4577	95.2	2.90	10	
Urano	19.182	84.013	14.6	0.30	1.1	
Neptuno	30.038	164.793	17.2	0.54	1.9	
Plutón	39.518	248.43	0.11			

57.0 56.8 56.6 56.4 56.2 0 0 56.2 0 56.2

.

Kepler:
$$r^3 = \frac{GM_*}{4\pi^2} P^2$$

 $M_{
m PL}$ =

Observe Period.

$$V_{
m PL}~=~\sqrt{GM_{*}/r}$$

Momentum Conservation:

$$M_*V_*/V_{\rm PL} \qquad \text{Observe K} = V_*\sin i \qquad M_{\rm pl} a_{\rm pl} = M_* a_*$$

$$==>~M_{
m P\,L}\sin i$$

HD 12661 Distancia = 121.3 años luz Masa $_*$ = 1.07 M_{sol} M_P sin(i) = 2.79 M_J Periodo = 253 días

Butler et al. (2005) y Maness et al. (2007)

POLLUX Distancia = 33.6 años luz Masa = $1.86 M_{sol}$ M sin(i) = $2.9 M_J$ Periodo = 589 días

Butler et al. (2005) y Maness et al. (2007)

55 CANCRI

Distancia = 40 años luz

 $Masa = 0.94 M_{sol}$

Fisher et al. (2007)

55 CANCRI Distancia = 40 años luz Masa = $0.94 M_{sol}$

4 exoplanetas tipo Jupiter

Fisher et al. (2007)

Star : 55 Cnc

- More data :

- Basic data (from Simbad)

Most recent ref (from ADS)

		THI	STAR
- <u>B</u>	asic data :		
	Name	55 Cnc	
	Distance	13.02 (± 0.4) pc	ref.
	Spectral Type	G8 V	
	Apparent Magnitude V	5.95	
	Mass	1.03 M _{sm}	
	Age	5.5 Gyr	ref.
	Effective Temperature	5243 (± 93) K	ref.
	Radius	$1.15(\pm0.035)R_{_{\rm SMR}}$	ref.
	Metallicity [Fe/H]	0.29	
	Right Asc. Coord.	08 52 37	
	Decl. Coord.	+28 20 02	

55 CANCRI

Distancia = 40 años luz

 $Masa = 0.94 M_{sol}$

4 exoplanetas tipo Jupiter

1 exoplaneta \sim 14 M_earth

(~Uranus)

 $M_jup \sim 318 M_tierra$

M tierra ~ 0.0031 M jup

5 PLANETS

- Basic data :

Name	55 Cnc h		ne <u>55 Cnc h</u> <u>55 Cnc c</u>		55 Cnc d		55 Cnc e		55 Cnc f
Discovered in	1996		2002		2002		2004		2007
Mass	$0.824~(\pm 0.007)~M_J$	ref.	$0.169~(\pm 0.008)~M_J$	ref.	$3.835(\pm0.08)M_J$	ref.	$0.034 (\pm 0.0036) M_J$	ref.	$0.144 (\pm 0.04) M_J$
Semi major axis	0.115 (± 0.0001) AU	ref.	0.24 (± 4.5e-05) AU	ref.	$5.77 (\pm 0.11) AU$	ref.	0.038 (± 1e-06) AU	ref.	0.781 (± 0.007) AU
Orbital period	14.65162 (± 0.0007) days	ref.	44.3446 (± 0.007) days	ref.	5218 (± 230) days	ref.	2.81705 (± 0.0001) days	<u>tef.</u>	260 (± 1.1) days
Eccentricity	0.014 (± 0.008)	ref.	0.086 (± 0.052)	ref.	0.025 (± 0.03)	ref.	0.07 (± 0.06)	tef.	0.2 (± 0.2)
Omega	131.94 deg.		244.39 (± 11) deg.		181.3 (± 32) deg.	ref.	248.9 (± 38) deg.	ref.	181.1 (± 60) deg.
Tperi	2450002.94749 (± 1.2)	ref.	2449989.3385 (± 3.3)	ref.	2452500.6 (± 230)	ref.	24499999.83643 (± 0.0001)	<u>ref.</u>	2450080.9108 (± 1.1)
Update	06/11/07		06/11/07		06/11/07		06/11/07		06/11/07

Marcy et al. (2008)

4

GJ 581

M. Mayor et al.: An Earth-type planet in GJ 581 planetary system

Table 2. Fitted orbital solution for the GJ 581 planetary system: 4 Keplerians. The model imposes circular orbits for planets GJ 581 b & e, since the derived eccentricities for a full Keplerian solution are insignificant (see text).

Paramete	er	GJ 581 e	GJ 581 b	GJ 581 c	GJ 581 d
Р	[days]	3.14942 ± 0.00045	5.36874 ± 0.00019	12.9292 ± 0.0047	66.80 ± 0.14
Т	[JD-2400000]	54716.80 ± 0.01	54712.62 ± 0.02	54699.42 ± 0.87	54603.0 ± 2.2
е		0 (fixed)	0 (fixed)	0.17 ± 0.07	0.38 ± 0.09
ω	[deg]	0 (fixed)	0 (fixed)	-110 ± 25	-33 ± 15
Κ	$[m s^{-1}]$	1.85 ± 0.23	12.48 ± 0.23	3.24 ± 0.24	2.63 ± 0.32
V	[km s ⁻¹]	-9.2082 ± 0.0002			
f(m)	$[10^{-14} M_{\odot}]$	0.21	108.11	4.34	10.05
$m_2 \sin i$	$[M_{\oplus}]$	1.94	15.65	5.36	7.09
a	[AU]	0.03	0.04	0.07	0.22
N _{meas}			119		
Span	[days]		1570		
σ (O-C)	$[ms^{-1}]$	1.53			
$\chi^2_{\rm red}$			1.49		

GJ 581	M jup $= 317.9$ M earth
Masa ~ 0.3 M_sun	$M_{saturn} = 95.2 M_{earth}$
Luminocidad ~ 0.013 L_sun	$M_uranus = 14.6 M_earth$
Distancia $= 20.55$ años Luz	$M_{neptune} = 17.2 M_{earth}$

Mayor et al. 2010, ApJ

Fig. 2. Radial velocity curves for planets e, b, c and d, from top to bottom. The lowest panel displays the residual to the four-planets keplerian fit.

Gliese 581

	Gliese 5	81
Planeta	Masa	Perido
	(m_tierra)	(días)
e	1.94	3.15
b	15.65	5.35
c	5.36	12.93
g	3.1	36.6
d	7.09	66.8
f	7.0	433

 $\begin{array}{rl} GJ \ 581 \\ Masa & \sim \ 0.3 \ \ M_sun \\ Luminocidad & \sim \ 0.013 \ \ L_sun \\ Distancia & = 20.55 \ anos \ \ Luz \end{array}$

M_jup = 317.9 M_earth M_saturn = 95.2 M_earth M_uranus = 14.6 M_earth M_neptune = 17.2 M_earth

Mayor et al. 2010, ApJ Vogt et al. 2010

Table 4. Our estimated values for the five parameters of the four exoplanets around 55 Cancri.

04510, Mexico

Planet	T (days)	t_0 (JD)	е	(deg)	$K_1 (m s^{-1})$	2 red
e	2.8170 ± 0.0932	10000.0046 ± 0.3250	0.07 ± 0.0016	250.2326 ± 0.4613	5.4311 ± 0.2241	
b	14.6515 ± 0.0002	10002.8917 ± 0.0549	0.0145 ± 0.0005	130.9176 ± 0.4591	71.7606 ± 0.3140	2 0314
с	44.3298 ± 0.0059	9989.9237 ± 0.4637	0.0853 ± 0.0014	78.2384 ± 0.4662	9.9820 ± 0.2075	2.031-
d	5218.3339 ± 0.5246	12500.7572 ± 0.3713	0.0250 ± 0.0006	180.2123 ± 0.2645	46.6872 ± 0.1431	

The planets are listed in order of increasing orbital period, and the planet designations, b-e, correspond to the notation given by Marcy et al. $\frac{2}{\text{red}}$ is also included. (2002) and Fischer et al. (2008). The value for the

Table 5. Our derived values for the mass of the planet and the major semiaxis for the four-planet fitting.

Ξ

Planet	This work $M_{\rm P} \sin i (M_J)$	This work a (AU)	Fischer et al. $M_{\rm P} \sin i (M_J)$	Fischer et al. a (AU)
e	0.0361 ± 0.0014	0.0383 ± 0.0008	0.034 ± 0.0036	$0.038 \pm 1.0 \times 10^{-6}$
b	0.8285 ± 0.0036	$0.1148 \pm 1.0 \times 10^{-6}$	0.824 ± 0.007	$0.115 \pm 1.1 \times 10^{-6}$
с	0.1661 ± 0.0035	$0.2402 \pm 2.1 \times 10^{-5}$	0.169 ± 0.008	$0.240 \pm 4.5 \times 10^{-5}$
d	3.8201 ± 0.0117	5.7705 ± 0.0004	3.835 ± 0.08	5.77 ± 0.11

For comparison, we also show the values obtained by Fischer et al. (2008) for their five-planet model, where we have removed the fifth body.

A fourth planet orbiting v Andromedae

S. Curiel¹, J. Cantó¹, L. Georgiev¹, C. E. Chávez², and A. Poveda¹

Instituto de Astronomía, UNAM, Apartado Postal 70-264, 04510 México, DF, Mexico e-mail: scuriel@astroscu.unam.mx

2 Instituto de Astronomía, UNAM, sede Ensenada, Km. 103 carretera Tijuana-Ensenada, 22860 Ensenada, Baja California, Mexico

S. Curiel et al.: A fourth planet orbiting v Andromedae

Table 1. Fitted orbital solutions for the v And planetary system: 4 Keplerians^a.

Parameter		v And-b	v And-d	v And-c	v And-e
Р	[days]	4.617033(23)	241.258(64)	1276.46(57)	3848.86(74)
Т	[JD-2440000]	10005.368(49)	10157.78(84)	11347.48(48)	9535.95(76)
е		0.02150(70)	0.2596(79)	0.2987(72)	0.00536(44)
ω	[deg]	324.9(3.8)	241.7(1.6)	258.82(43)	367.3(2.3)
Κ	$[m s^{-1}]$	70.51(45)	56.26(52)	68.14(45)	11.54(31)
a	[AU]	0.05922166(20)	0.827774(15)	2.51329(75)	5.24558(67)
m sin i	$[M_{Jup}]$	0.6876(44)	1.981(19)	4.132(29)	1.059(28)

Notes. (a) The χ_{ted}^{-} and rms of the residuals for the four Keplerian orbit fit are 1.11 and 13.76 m s⁻¹, respectively. We found that the systemic velocity of the data is $V_0 = 3.37 \text{ m s}^{-1}$. The data contains 385 measurements taken within a span of time of 7383 days, about twice the estimated period for planet e. The errors in the derived parameters are in brackets and represent the uncertainties in the last two digits of the corresponding figures.

Curiel et al. (2011)

A&A 525, A78 (2011)

(a)

Window

0 80 b

60

40

20

0

40 E(c)

20

0

Power

Julian Date - 2,440,000.02 (day)

Fig. 2. Quadruple-Keplerian orbit fit to the velocities for v And. The velocities and fits for each of the four planets are shown separately for clarity by subtracting the effects of the other three planets. The panels contain inner planet b (top), second planet d (second panel), third planet c (third panel) and outer planet e (fourth panel). This figure also shows the residuals after subtracting the four planets (bottom). For a comparison with a 3-planet fit model see Fig. 1. The data taken at the Lick observatory and with ELODIE have a mean velocity uncertainty of ~7.44 m s⁻¹.

A78, page 4 of 5

0 100 1000 10^{4} 1 10 Period (days)

b) Periodogram of the data showing the periods of the 3 planets previously known (v And-b, c and d). c) Periodogram of the residuals after subtracting planets b, c and d. This periodogram shows a strong peak at a period of about 3800 days, which corresponds to planet e (see main text). d) Periodogram of the residuals after subtracting 4 orbits. This periodogram shows a strong peak (with a FAP ~ 0.000005) at a period of about 183 days. e) Periodogram of the residuals after subtracting 5 orbits. This periodogram shows no significant peak. FAP thresholds of 1% and 0.1% are indicated as dashed lines.

Fig. 3. a) Window Function for the data taken with the Lick observatory.

2.- Tránsito del Planeta frente a la Estrella

Alonso et al. 2004

TABLE 2 TrES-1 Planet

Parameter	Value
	Orbital
р Г _с а К	$\begin{array}{r} 3.030065 \pm 8 \times 10^{-6} \text{ days} \\ 2,453,186.8060 \pm 0.0002 \text{ (HJD)} \\ 0.0393 \pm 0.0011 \text{ AU} \\ 88.5^{+1.5}_{-2.2} \text{ deg} \\ 115.2 \pm 6.2 \text{ m s}^{-1} \end{array}$
	Physical
$M_p \dots \dots$	$\begin{array}{l} (0.75 \pm 0.07) M_{\rm Jup} \\ 1.08^{+0.18}_{-0.04} R_{\rm Jup} \\ 0.130^{+0.009}_{-0.003} \end{array}$

TA	BLE 1
TrES-1 I	PARENT STAR
Parameter	Value
A	19h04m09s8 (J2
el	+36°37′57″ (J
	11.34
	11.79
– V	0.78
	10.294
-H	0.407
-K	0.475
ectrum	K0 V
	$0.88 \pm 0.07 I$
	$0.85_{-0.05}^{+0.10} R_{\odot}$
SC	02652-01324
1ASS	19040985+3637574

Celestron C-14 + SBIG ST-7XME CCD

Tonny Vanmunster usó un Telescopio Celestron C-14 junto con una cámara CCD SBIG ST-7XME (sin filtros) para detectar el transito del Planeta TrES-1.

Holman et al. 2007, ApJ, 664, 1185-1189
	D (km)	Area
Sol	1392,000	100
Júpiter	139,822	1
Saturno	116,464	0.7
Tierra	12,742	0.008
Luna	3,742	0.0007

Holman et al. 2007, ApJ, 664, 1185-1189

COROT

El planeta está a 330 UA de la estrella y a 500 años luz de la Tierra

Gemini en Mauna Kea

Lafrenicre et al. (2008)

CoRot-1b

TRAPPIST 1 (Transiting Planets and Planetesimals Small Telescope)

TRAPPIST-1

M Dwarf M8V $M = 0.08 \text{ M}_\text{sun}$ $L_\text{bol} = 5.25 \ 10^{-4} \text{ L}_\text{sun}$ $\text{Dist} = 39.5 \ \text{ly} \ (12.1 \ \text{pc})$ $\text{Temp} = 2550 \ \text{K}$ $\text{Age} = 3-8 \ \text{Gyr}$

Sun

TRAPPIST 1

Kepler Space Telescope + VLT ~23 días de observación continua

TRAPPIST-1 System							
	b	C	d	е	f	g	h
Orbital Period	1.51 days	2.42 days	4.05 days	6.10 days	9.21 days	12.35 days	~20 days
Distance to Star Astronomical Units (AU)	0.011 AU	0.015 AU	0.021 AU	0.028 AU	0.037 AU	0.045 AU	~ 0.06 AU
Planet Radius relative to Earth	1.09 <i>R</i> _{earth}	1.06 R _{earth}	0.77 R _{earth}	0.92 <i>R</i> _{earth}	1.04 <i>R</i> _{earth}	1.13 R _{earth}	0.76 R _{earth}
Planet Mass relative to Earth	0.85 <i>M</i> _{earth}	1.38 <i>M</i> _{earth}	0.41 <i>M</i> _{earth}	0.62 <i>M</i> _{earth}	0.68 M _{earth}	1.34 _{earth}	_

Solar System				
	Mercury	Venus	Earth	Mars
Orbital Period days	87.97 days	224.70 days	365.26 days	686.98 days
Distance to Star Astronomical Units (AU)	0.387 AU	0.723 AU	1.000 AU	1.524 AU
Planet Radius relative to Earth	0.38 <i>R</i> _{earth}	0.95 R _{earth}	1.00 R _{earth}	0.53 R _{earth}
Planet Mass relative to Earth	0.06 <i>M</i> _{earth}	0.82 <i>M</i> _{earth}	1.00 <i>M</i> _{earth}	0.11 <i>M</i> _{earth}

Illustrations

Jupiter & Major Moons

TRAPPIST-1 System

Ricci et al (2015)

TABLE 3			
FIT RESULTS OF THE PHYSICAL AND ORBITAL PARAMETERS OF WASP-39B			
and WASP-43b obtained with TAP			

Parameter	Filter	WASP-39	WASP-43
<i>i</i> [°]		87.78 ± 0.43	81.92 ± 0.54
a/R_*		11.32 ± 0.42	4.82 ± 0.11
	U	0.1462 ± 0.0116	
	V		0.1615 ± 0.0041
R_n/R_*	R	0.1424 ± 0.0023	0.1599 ± 0.0025
1., .	Ι	0.1424 ± 0.0023	0.1653 ± 0.0054
	i		0.1738 ± 0.0033
P [d]		4.055259	0.81347437
e		0	0
ω[°]		0	0
	U	0.950	
	V		0.750
l_1	R	0.425	0.599
-	Ι	0.335	0.451
	i		0.485
	U	-0.086	
	V		0.040
l_2	R	0.246	0.137
~	Ι	0.250	0.193
	i		0.183

NOTES.—The fit of the period and the period variation are described in § 4. The upper part of the table shows the fitted parameters, while the lower part shows the fixed values: P from Facdi et al. (2011) for WASP-39b and from Chen et al. (2014) for WASP-43b; l_1 and l_2 from the Exofast online tool (Eastman et al. 2013).

FiG. 3.—Light curves of WASP-39b obtained with the 0.84 m telescope in R and I bands and with the 2.12 m telescope in the U band. For displaying purposes, the light curves were reported to the time of the last observation (2014 March 21), and an arbitrarily shift is applied. The fit of the light curves (*solid lines*) is also shown, as well as the residuals in the lower box. See the online edition of the PASP for a color version of this figure.

FIG. 4.—Light curves of WASP-43b obtained with the 0.84 m telescope in VRI bands and with the 1.50 m telescope in the Gunn-*i* band, reported to the time of the observation of 2014 March 29, and arbitrarily shifted. The fit and the residuals are also shown. The dashed line represent an interpolation of the model. See the online edition of the *PASP* for a color version of this figure.

3.- Astrometría

Movimientos propios + ???

Paralaje aparente + Movimientos propios + Compañera

1 micro-arcsec es aproximadamente el tamaño de una moneda de 10 pesos en la superficie de la Luna vista desde la Tierra.

1 micro-arcsec es aproximadamente el tamaño de una moneda de 10 pesos en la superficie de la Luna vista desde la Tierra.

Very Long Baseline Array (VLBA)

New Hampshire

Baseline up to 8000 km

Resolution of ~ 1-0.5 mas Astrometric accuracy of ~10-20 micro-arcseconds

St. Croix Virgin Islands

DoAr 21

Curiel et al. (2019)

Distance = 134.6 pc M = 2.04 M_sun M_2 = 0.35 M_sun m_p = 35.5, 44.0 m_jup

Observaciones Astrométricas con el VLBA

GAIA: Búsqueda Astrométrica de Exoplaneats

•Duración de la misión: 5 años

•Precisión esperada en observaciones individuales: 60 microsegundos de arco

•Precisión esperada al final de la misión: 10 micro-segundos de arco para las estrellas más brillantes

•Más de 10,000 Exoplanetas hasta 500 parsecs (1600 años luz)

•Se estima que entre 1000-1500 de los planetas estén asociados a

estrellas enanas tipo M (M-type dwarf stars: entre 0.08 y 0.5

M_sun) a distancias menores a 100 parsecs (320 años luz)

•Es posible que se detecten algunos tránsitos

(1 micro-arcsec es aproximadamente el tamaño de una moneda de 10 pesos en la superficie de la Luna vista desde la Tierra.)

4.- Imagen Directa del Planeta

Las Estrellas son más brillantes...

millones de veces

...que los Planetas

...Ocultos en el resplandor. —

Imagen Directa de Planetas

La detección directa de los planetas consiste en obtener una imagen parcial o total del sistema planetario. Este es por mucho el mejor método de todos ya que permite un mejor estudio de los planetas.

Hay dos regímenes distintos en los cuales se puede observar luz del planeta:

- a) Luz reflejada de la Estrella. (Por ejemplo la Luna)
- b) Emisión térmica del Planeta. (Por ejemplo Júpiter)

El parámetro critico en ambos casos es el cociente de flujo entre la Estrella y el Planeta. En ambos casos este cociente es muy pequeño por lo que es muy difícil *VER* al planeta. Debido a esto se usan técnicas que permiten disminuir u ocultar a la estrella. El método más usado es el Coronografía.

Coronografía. En pocas palabras, este método consiste en ocultar a la estrella con un "parche" (mascara coronográfica) en el plano de la imagen (sin ocultal al Planeta).

Evidencia directa de Planetas fuera del Sistema Solar

-beta Pictoris muestra evidencias de la presencia de uno o más planetas en su disco: brecha, alabeo

t~100 millones de años

Imagen directa de un planeta: B-Pic b Planeta Planeta en el en el 2009 2003 **Estrella** Órbita Saturno Disco protoplanetario Lagrange'10

Otros discos muestran evidencias de perturbaciones, probablemente debidas a planetas masivos

Dust Disks around Stars

HST • NICMOS

PRC99-03 • STScl OPO • January 8, 1999

B. Smith (University of Hawaii), G. Schneider (University of Arizona),

E. Becklin and A. Weinberger (UCLA) and NASA

FOTOGRAFIA HISTORICA

M1207, 2M1207A o 2MASSW J1207334-393254 es una enana marrón localizada en la constelación de Centauro. El compañero de esta estrella, 2M1207b, podría ser el primer Exoplaneta detectado por imagen directa. Además es el primer Exoplaneta asociado a una enana marrón.

Imagen Infrarroja tomada con el ESO VLT/NACO

Chauvin et al. (2004)

II. ZONA HABITABLE

The habitable zone corresponds to the range of orbital distances where liquid water can exist on a planet's surface.

Zona habitable: 0-100°C

La mayoría de los Planetas descubiertos son gigantes como Júpiter y Saturno y se encuentran en el lugar equivocado.

El lugar correcto en nuestro Sistema Solar
Lista de Planetas en zonas habitables

Rank	Planet name	Planet Mas	а	Eccentricity	Р	Star Name	D	Spectral Type	Star Mass	Luminosity	HabZone	HabZone
		(Jup)	(AU)		(dias)		(pc)		(Sun)	(L_sun)		1
0	Earth	0.00315	1	0.017	365.26	Sol	0	G2 V	1	1	0.95	1.37
1	GJ 667C f	0.0085	0.156	0.03	39.026	GJ 667C	6.84	M1.5V	0.33	0.019	0.13	0.19
2	Gliese 876 c	0.637	0.12959	0.002	30.23	Gliese 876	4.7	M4 V	0.334	0.009	0.09	0.13
3	HD 40307 g	0.0223	0.6	0.29	197.8	HD 40307	12.8	K2.5V	0.77	0.358	0.57	0.82
4	HD 38858 b	0.0961	1.0376	0.27	407.15	HD 38858	15.2	G4V	0	1.056	0.98	1.41
5	HD 10180 a	0.06733	1.422	0.19	601.2	HD 10180	39.4	G1V	1.06	2.028	1.36	1.96
6	HD 147513 b	1.21	1.32	0.26	528.4	HD 147513	12.9	G3/G5V	0.92	1.322	1.1	1.58
7	HD 7199 b	0.29	1.36	0.19	615	HD 7199	36	KOIV/V	0.89	1.249	1.07	1.54
8	mu Ara h	1 676	1 5	0 128	643 25	mu Ara	15 3	G3 IV-V	1.08	2 277	1 44	2 07
٥ ۵	HD 216435 h	1.070	2 56	0.120	1311	HD 216435	22.2	GOV	1 3	4 796	2.09	3.01
10	HD 218566 b	0.21	0.6873	0.07	225.7	HD 218566	29 94	K3V	0.85	0.511	0.68	0.98
11	HD 63765 b	0.21	0.0075	0.3	358	HD 63765	32.6	GOV	0.05	0.511	0.00	1.14
12		0.04	0.949	0.24	227.6		42.0	V2V	0.005	0.003	0.79	0.70
12	UD 124606 d	0.33	1 1 5 6 7	0.19	450.26	DD-002023	42.2 26 E	CCIV	0.74	1 427	1.14	1.64
13	HD 134000 u	0.121	0.940	0.40	439.20	HD 134000	20.5	GOIV	0 07	1.427	1.14	1.04
15		0.11	0.049	0 02	209.0023		24.0		0.97	1.055	1 22	1.1
15	HD 23079 D	2.5	1.5	0.02	020	HD 23079	34.8	F8/GU V	1.1	1.955	1.33	1.92
10	HD 137388 D	0.223	0.89	0.30	1070 4	HD 137388	38		0.80	0.765	0.83	1.2
17	HD 10697 D	0.38	2.16	0.1	1076.4	HD 10697	32.50	G5 IV	1.15	3.609	1.81	2.61
18	HD 114729 D	0.84	2.08	0.32	1135	HD 114729	35	G3 V	0.93	2.885	1.62	2.33
19	HD 216437 b	1.82	2.32	0.29	1256	HD 216437	26.5	G4 IV-V	1.06	2.955	1.64	2.36
20	HD 34445 b	0.79	2.07	0.27	1049	HD 34445	46.5	GU	1.07	2.877	1.62	2.33
21	HD 210277 b	1.23	1.1	0.472	442.1	HD 210277	21.29	GO	1.09	1.128	1.01	1.46
22	HD 159868 b	2.1	2.25	0.01	11/8.4	HD 159868	52.7	G5V	1.09	3.941	1.89	2./3
23	HD 181720 b	0.37	1.78	0.26	956	HD 181720	56	G1V	0.92	2.514	1.51	2.18
24	HD 73534 b	1.15	3.15	0.046	1800	HD 73534	96.99	G5IV	1.29	5.314	2.2	3.1/
25	ups And d	10.19	2.55	0.2/4	1302.61	ups And	13.47	F8 V	1.2/	3./22	1.84	2.65
26	16 Cyg B b	1.68	1.68	0.689	799.5	16 Cyg B	21.41	G2.5 V	1.01	1.695	1.24	1.79
27	HD 30562 b	1.29	2.3	0.76	1157	HD 30562	26.5	F8V	1.219	3.065	1.67	2.4
28	BD14 4559 b	1.47	0.777	0.29	268.94	BD14 4559	50	K2V	0.86	0.567	0.72	1.03
29	HD 190647 b	1.9	2.07	0.18	1038.1	HD 190647	54.2	G5	1.1	2.535	1.52	2.19
30	HD 187085 b	0.75	2.05	0.47	986	HD 187085	44.98	G0 V	1.22	2.924	1.63	2.35
31	HD 11506 b	3.44	2.43	0.22	1270	HD 11506	53.82	G0V	1.19	3.205	1.71	2.46
32	HD 13908 c	5.13	2.03	0.12	931	HD 13908	71.2	F8V	1.29	4.456	2.01	2.9
						OGLE-2009-						
	OGLE-2009-					BLG-						
	BLG-151 MOA					151_MOA-						
33	2009-232 b	7.5	0.31	0	0	2009-232	390	?	0.018	0.054	0.22	0.32
34	HD 141937 b	9.7	1.52	0.41	653.22	HD 141937	33.46	G2/G3 V	1.1	1.574	1.2	1.72
35	HD 43197 b	0.6	0.92	0.83	327.8	HD 43197	54.9	G8V	0.96	0.885	0.9	1.29
36	HD 213240 b	4.5	2.03	0.45	951	HD 213240	40.75	G4 IV	1.22	3.534	1.79	2.58
37	HD 20782 b	1.9	1.381	0.97	591.9	HD 20782	36.02	G2 V	1	1.618	1.21	1.75
38	HD 183263 b	3.67	1.51	0.357	626.5	HD 183263	53	G2IV	1.17	2.252	1.43	2.06
39	HD 4113 b	1.56	1.28	0.903	526.62	HD 4113	44	G5V	0.99	1.524	1.18	1.7
40	HD 38529 c	17.7	3.695	0.36	2134.76	HD 38529	39.28	G4 IV	1.48	7.25	2.57	3.7
41	HD 23127 b	1.5	2.4	0.44	1214	HD 23127	89.1	G2V	1.13	3.279	1.73	2.49
42	HD 28254 b	1.16	2.15	0.81	1116	HD 28254	56.2	G1IV/V	1.06	2.907	1.63	2.34
43	HD 125612 b	3	1.37	0.46	502	HD 125612	52.82	G3V	1.1	1.478	1.16	1.67
44	HD 132406 b	5.61	1.98	0.34	974	HD 132406	71	G0V	1.09	2.347	1.46	2.1
45	HD 222582 b	7.75	1.35	0.725	572.38	HD 222582	42	G5	0.99	1.639	1.22	1.76
46	HD 86264 b	7	2.86	0.7	1475	HD 86264	72.6	F7V	1.42	5.034	2.14	3.08

www.planetarybiology.com

Lista de Planetas en zonas habitables

www.planetarybiology.com

17 Abril 2014, NASA anuncia Kepler-186f: radio de la tierra...

17 Abr 2014: Kepler-186f: en la zona habitable!

NASA's Kepler Mission Discovers Bigger, Older Cousin to Earth

1400 años luz Cygnus

Kepler-452b

TRAPPIST 1 (Transiting Planets and Planetesimals Small Telescope)

Sun

TRAPPIST-1

M Dwarf M8V $M = 0.08 \text{ M}_\text{sun}$ $L_\text{bol} = 5.25 \ 10^{-4} \text{ L}_\text{sun}$ $\text{Dist} = 39.5 \ \text{ly} \ (12.1 \ \text{pc})$ $\text{Temp} = 2550 \ \text{K}$ $\text{Age} = 3-8 \ \text{Gyr}$

Habitable Zone

Illustrations

Jupiter & Major Moons

TRAPPIST-1 System

III. NUEVAS TECNICAS PARA LA BUSQUEDA DE EXOPLANETAS

Astronomical Image Reconstruction with Convolutional Neural Networks

Rémi Flamary Université Côte d'Azur Lagrange, OCA, CNRS Nice, France Email: remi.flamary@unice.fr

Fig. 1. Architecture of the proposed convolutional neural network. On the upper part are reported the size of the input, intermediary images and outputs. On the lower part the parameters and size of the filters for each layer.

https://arxiv.org/pdf/1612.04526.pdf http://archive.stsci.edu/cgi-bin/dss_form

Lucky Imaging: Shift-and-Add Correction

Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90

Christopher J. Shallue (Google Brain) and Andrew Vanderburg (U. Texas and CFA) (ApJ, 2018, Volume 155, number 2, 21 pp)

Convolutional neural network architecture for classifying light curves, with both global and local input views.

Visualizing the geometric space in which the convolutional neural metwork embeds its imput light curves.

Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90

Christopher J. Shallue (Google Brain) and Andrew Vanderburg (U. Texas and CFA) (ApJ, 2018, Volume 155, number 2, 21 pp)

Convolutional neural network architecture for classifying light curves, with both global and local input views.

Transit light curves and best-fit models for the newly discovered planets around Kepler-80 and Kepler-90.

Proyectos Futuros: Imagen Directa

Esta es la técnica más prometedora por lo que se están desarrollando varios proyectos tanto en tierra con en el espacio. Se espera que esta técnica permita estudiar cosas tales como:

•La atmósfera (densidad, composición, etc.)

- •La superficie (color, morfología de los océanos/continentes, etc.
- •Rotación de los planetas (por ejemplo, la duración del día)

•Satélites, anillos, etc.

JWST (James Web Space Telescope) será el sucesor del HST y tendrá un espejo de 7m y varios instrumentos de nueva generación (espectrógrafos y cámaras en el óptico y el cercano infrarrojo). Este telescopio tendrá una serie de coronógrafos dedicados a la búsqueda de planetas. Fecha - 2020?.

Proyectos Futuros: Imagen Directa

DARWIN será un telescopio espacial (varios telescopios) que se espera de muchas de las respuestas, incluyendo si hay posibilidad de vida en los planetas. Estudiará del orden de 200 Estrellas cercanas. Fecha de lanzamiento después del 2025?.

TPF (Terrestrial Planet Finder) es un interferómetro que intentara contestar la pregunta fundamentas: ¿Existe vida en otros mundos? El objetivo principal es buscar planetas tipo Tierra y determinar si determinar si pueden sustentar vida en ellos. Todavía no hay posible fecha para su construcción.

IV. BUSQUEDA DE EXOPLANETAS EN MEXICO

Búsqueda de Exoplanetas en México

•No hay un grupo dedicado a la búsqueda y caracterización de Exoplanetas.

•Hay varios investigadores que dedican parte de su tiempo a la búsqueda o al estudio de Exoplanetas.

•Se está construyendo el telescopio TAOS II para la búsqueda de cuerpos menores en la parte externa del Sistema Solar. Se espera también encontrar Tránsitos de Exoplanetas.

•Se está construyendo el telescopio óptico SAINT-EX de 1 metro de diámetro en SPM, el cual estará dedicado a la búsqueda de Exoplanetas usando la técnica de Tránsito.

•Se esta iniciando un proyecto para la búsqueda Astrométrica de Exoplanetas usando el VLBA y GAIA.

•Se espera que en los próximos años se forme al menos un grupo dedicado a la búsqueda y caracterización de Exoplanetas.

SAINT-EX (Searching And characterisINg Transiting Exoplanets)

Very Long Baseline Array (VLBA)

New Hampshire

Baseline up to 8000 km

Resolution of ~ 1-0.5 mas Astrometric accuracy of ~ 10 micro-arcseconds

St. Croix Virgin Islands

TVLM 513 M8.5 M-Dwarf

Curiel et al. (2019)

TVLM 513 M8.5 M-Dwarf

$$M = 0.076 \text{ M}_{sun}, D = 10.46 \text{ pc}$$

P = 0.44 yrs, $a_p = 0.24 \text{ AU}, e_p = 0.0, i = 133 \text{ deg},$
 $m_p = 4.4 \text{ m}_j$

Curiel et al. (2019)

1 micro-arcsec es aproximadamente el tamaño de una moneda de 10 pesos en la superficie de la Luna vista desde la Tierra.

VLBA: Búsqueda Astrométrica de Exoplaneats

•Precisión esperada en observaciones individuales: 10-20 microsegundos de arco

•Es posible encontrar Enanas Marrón y planetas masivos asociados a estrellas tipo solar y menos masivas a distancias menores de unos 150 parsecs

•Es posible encontrar planetas tipo Júpiter y menos masivos asociados a estrellas enanas tipo M (M-type dwarf stars: entre 0.08 y 0.3 M_sun) y a Enanas Marrón (entre 30 y 80 M_jup) a distancias menores a 50 parsecs (160 años luz)

•Enanas Marrón y Planetas asociados a Estrellas muy Jóvenes

(1 micro-arcsec es aproximadamente el tamaño de una moneda de 10 pesos en la superficie de la Luna vista desde la Tierra.)

exoplanets.org/ exoplanet.eu/ <u>www.planetarybiology.com/</u> <u>www.dtm.ciw.edu/boss/IAU/div3/wgesp/</u>

CFA Press release:

http://www.cfa.harvard.edu/news/archive/pr0427.html

Sky and Telescope:

http://www.skyandtelescope.com/news/3309441.html?page=1&c=y

Sky and Telescope:

http://www.skyandtelescope.com/news/3309506.html

TRANSITSEARCH:

http://transitsearch.org/

Detection of Transits of Extrasolar Giant Planets with Inexpensive Telescopes and CCDs:

http://www.aavso.org/publications/ejaavso/v33n1/1.shtml

Durante la noche podemos ver algunas de las estrellas que tienen Planetas...

